FURTHER MATHS TERM BY TERM CURRICULUM
 Specification link - Edexcel Specification: AS Further Mathematics
 Specification link - Edexcel Specification: A Level Further Mathematics

January 2023

YEAR 12

TERM	Teacher 1 (Further Core Mathematics) delivered via 3 x 70 minute lesson per week	Teacher 2 (Decision Mathematics \& Further Mechanics) delivered via 1×70 minute lesson per week
1	FC1.1 Complex Numbers - Solve any quadratic equation with real coefficients. - Add, subtract and multiply complex numbers in the form $\mathrm{x}+$ iy with x and y real. - Understand and use the terms 'real part' and 'imaginary part'. - Use and interpret Argand diagrams. - Convert between the Cartesian form and the modulusargument form of a complex number. - Multiply and divide complex numbers in modulus-argument form. - Construct and interpret simple loci in the Argand diagram such as $\|z-a\|>r$ and $\arg (z-a)=\theta$.	D1.2 Algorithms on Graphs (Part 1) - Understand what an algorithm is. - Trace an algorithm in the form of a flow chart. - Trace an algorithm given as instructions written in text. - Know how to determine the output of an algorithm and how it links to the input. - Be able to determine the order of a given algorithm and standard network problems. - Know how to apply a bubble sort algorithm to a list of numbers or words. - Know how to apply the quick sort algorithm to a list of numbers or words, clearly identifying the pivots used for each pass. - Identify the number of comparisons and swaps used in a given pass. - Identify size, efficiency and order of an algorithm and use them to make predictions. - Know how to solve bin packing problems using full bin, first fit, and first fit decreasing algorithms, and understand their strengths and weaknesses. - Know the meaning of the vocabulary used in graph theory e.g. degree of a vertex, isomorphic graphs, walks, paths and cycles. - Be familiar with different types of graph e.g. complete, planar, isomorphic, simple, connected. - Understand graphs represented in matrix form. - Be familiar with k notation. - Know the definition of a tree. - Be able to determine if a graph is Eulerian, semi-Eulerian or neither, and find Eulerian cycles.

1	FC1.6 Matrices - Find the dimension of a matrix. - Add and subtract matrices of the same dimension. - Multiply a matrix by a scalar. - Multiply conformable matrices. - Calculate determinants of 2×2 and 3×3 matrices. - Understand and use singular and nonsingular matrices. - Know the properties of inverse matrices. - Calculate the inverse of non-singular 2×2 and 3×3 matrices. - Use matrices and their inverses to solve linear simultaneous equations, including three linear simultaneous equations in three variables. - Interpret geometrically the solution and failure of solution of three simultaneous linear equations. - Use matrices to represent 2D rotations, reflections, enlargements and translations. - Understand and use zero and identity matrices. - Use matrix products to represent combinations of transformations. - Use matrices to represent linear transformations in three dimensions. - Use inverse matrices to reverse the effect of a linear transformation. - Use the determinant of a matrix to determine the area scale factor of a transformation. - Find invariant points and lines for a linear transformation.	D1.2 Algorithms on Graphs (Part 1) - Understand the meaning of a minimum spanning tree. - Apply Kruskal's algorithm to a network to find the minimum spanning tree. - Apply Prims algorithm to a network to find the minimum spanning tree. - Apply Prim's algorithm to a distance matrix to find the minimum spanning tree. - Apply Dijkstra's algorithm to find the shortest path between two vertices in a network. - Trace back through a network to be able to find the route corresponding to the shortest path. - Consider modifications to an original shortest path problem, for example by dealing with multiple start points or a different end point.

Assessment Point 1

A short assessment point is completed at the end of Term 1, following a short period of revision of the above topics (both the Further Core and Decision Mathematics modules).

3	FC1.5 Transforming Polynomials - Understand and use the relationship between roots and coefficients of polynomial equations up to quartic equations. - Form a polynomial equation whose roots are a linear transformation of the roots of a given polynomial equation (of at least cubic degree). FC1.7 Proof - Obtain a proof for the summation of a series, using induction. - Use proof by induction to prove that an expression is divisible by a certain integer. - Use mathematical induction to prove general statements involving matrix multiplication.	D1.9 Critical Path Analysis - Model a project by an activity network from a precedence table. - Complete a precedence table from a given network. - Understand the use of dummies. - Know how to carry out a forward pass and backward pass using early and late event times. - Interpret and use dummies. - Be able to identify critical activities and critical paths. - Know how to determine the total float of activities. - Construct and interpret Gantt (cascade) charts.
4	FC1. 8 Vectors - Know how to find the vector equation of a line in both two and three dimensions. - Understand and use the Cartesian forms of an equation of a straight line in three dimensions. - Understand and use the vector and Cartesian forms of the equation of a plane. - Find the scalar product of two vectors. - Check whether vectors are perpendicular by using the scalar product. - Use the scalar product to express the equation of a plane. - Use the scalar product to calculate the angle between two lines. - Use the scalar product to calculate the angle between two planes. - Use the scalar product to calculate the angle between a line and a plane. - Find the points of intersection of lines and planes which meet. - Calculate the perpendicular distance between two lines. - Calculate the perpendicular distance from a point to a line or to a plane.	FM1.1 Momentum \& Impulse (Part 1) - Understand the definitions, derivation, and units of momentum and impulse. - Understand what happens to the momentum of a sphere as a result of a collision. - Use the principle of conservation of momentum applied to direct collisions in 1-dimension. FM1.3 Work, Energy \& Power - Understand the derivation, units and definitions of work and energy. - Define kinetic energy (KE). - Understand that work done on a body moving in a horizontal plane is the change in kinetic energy. - Understand the concept of gravitational potential energy (GPE). - Include GPE when applying the workenergy principle. - Know the conditions for conservation of mechanical energy. - Solve problems involving work and energy. - Understand that power in watts is the rate of doing work. - Calculate the power (P) of a vehicle with a tractive (driving) force F, moving with velocity v . - Use the formula $P=F v$ in problem solving.

Assessment Point 2

A broader, practice-paper style assessment point is completed during Term 4, after most of the content for AS has been taught. This will cover a wider range of content from the Further Core 1, Decision Mathematics 1 and Further Mechanics 1 modules, and is designed to reflect the demands of the formal AS paper towards the end of the academic year.

5	FC1.4 Volumes of Revolution - Derive formulae for and calculate volumes of revolution about both the x and y -axes. - Solve modelling problems which involve volumes of revolution.	FM1.5 Elastic Collisions in One Dimension - Express the 'compressibility', 'bounciness' or 'elasticity' of an object by a value called the coefficient of restitution (e). - Know that $0 \leq e \leq 1$ [and that $\mathrm{e}=0$ means inelastic and $\mathrm{e}=1$ means perfectly elastic]. - Know and be able to use Newton's (experimental) law of restitution for direct impacts of elastic spheres. - Calculate the change in kinetic energy due to an impact. - Solve problems of the following types involving elastic impacts: a) successive collisions between pairs of spheres (horizontal motion). b) bouncing ball (off a horizontal elastic plane). c) successive collisions including two spheres and sphere against a wall. d) determination of the number of collisions or deriving the possible range of e.
Revision for AS exams AS exams		
	Paper 1: Further Core Mathematics 1 50%, 1 hour 40 mins, 80 marks	Only Year 12 content assessed
	Paper 2: Decision Mathematics 1 Further Mechanics 1 50%, 1 hour 40 mins, 80 marks	Only Year 12 content assessed Section A (25% of AS Level) Section B (25% of AS Level)

YEAR 13
Module 1 is taught by Teachers 1 and 2 across the Year, with particular focus through practical assessed activities.

TERM	Teacher 1 (Further Core Mathematics) delivered via 3 x 70 minute lesson per week	Teacher 2 (Decision Mathematics \& Further Mechanics) delivered via 1×70 minute lesson per week
1	FC2.1 Complex Numbers - Multiply and divide complex numbers in modulus-argument and exponential form. - Know and use cosine and sine in terms of the exponential form. - Understand, remember and be able to use de Moivre's theorem: $z^{n}=r^{n} e^{\text {in } \theta}=r^{n}(\sin n \theta+$ $i \cos n \theta)$. - Derive multiple angle formulae/expressions e.g. $\cos 3 \theta$ in terms of powers of $\cos \theta$, and $\sin ^{3} \theta$ in terms of multiple angles of $\sin \theta$. - Apply de Moivre's theorem to sum a geometric series. - Know how to solve completely equations of the form $z^{n}-a-i b=0$, giving special attention to cases where $\mathrm{a}=1, \mathrm{~b}=0$. FC2.5 Hyperbolic Functions - Know the definitions of $\sinh x, \cosh x$ and tanh x including their domains and ranges. - Sketch graphs of the hyperbolic functions. - Differentiate and integrate the hyperbolic functions and know the standard results. - Understand and be able to use the inverse hyperbolic functions including domains and ranges. - Derive, use and know the logarithmic forms of the inverse hyperbolic functions.	D1.3 The Planarity Algorithm - Apply the planarity algorithm for planar graphs. - Determine if a graph contains a Hamiltonian cycle. D1.5 Route Inspection - Determine whether a graph is traversable. - Apply an algorithm to solve the route inspection problem; - Find a route by inspection. - Understand the importance of the order of vertices of the graph in finding a route.

Assessment Point 1

A practice-paper style assessment point is completed at the start of Term 2. This includes contents from the Further Core 1 and Decision Mathematics 1 modules, as well as the Further Core 2 content covered during Term 1.

2	FC2.4 Polar Coordinates - Understand and be able to use polar coordinates and be able to convert between polar and Cartesian coordinates. - Know how to sketch standard polar curves. - Find tangents parallel and perpendicular to the initial line. - Find (compound) areas under polar graphs using the ${ }^{1} \int$ formula " r " $d \theta$. FC2.2 Series - Use the method of differences to sum simple finite series. - Find and use higher derivatives of functions. - Know how to express functions as an infinite series in ascending powers using Maclaurin's expansion. - Find the series expansion of composite functions.	D1.6 The Travelling Salesperson Problem - Understand the travelling salesman problem and that there is no simple algorithm to solve it for complex networks. - Use the nearest neighbour algorithm to find upper bounds for the problem. - Find lower bounds for a problem. - Understand that not all upper and lower bounds give a solution to the problem. - Know how to identify the best upper and lower bounds. - Solve the travelling salesman problem and interpret this solution in the context of the problem. D1.8 The Simplex Algorithm - Understand and use slack, surplus and artificial variables. - Use slack variables to write inequality constraints as equations. - Know how to rewrite LP problems so that each equation contains all the variables x, y, s, and t . - Put the information in an initial tableau. - Find the pivot and use it to form a new tableau. - Identify if a tableau satisfies the optimality condition. - Know how to use slack and surplus variables. - Understand and be able to use artificial variables. - Use the two-stage simplex algorithm. - Use the Big-M method. - Relate the solution to the original problem.

3	FC2.3 Further Calculus - Know how to deal with infinity as a limit of a definite integral. - Integrate functions across limits which include values when the function is undefined i.e. deal with discontinuous integrands. - Understand and be able to evaluate the mean value of a function. - Integrate functions which can be split into partial fractions up to denominators with quadratic factors. - Differentiate inverse trigonometric functions such as - ! 2 $\arctan x .$ - Know how to integrate functions of the form ($\mathrm{a}^{\prime \prime}-\mathrm{x}^{\prime \prime}$)\#" and ($\left.\mathrm{a}^{\prime \prime}+\mathrm{x}^{\prime \prime}\right) \#$ ' and be able to choose trigonometric substitutions to integrate associated functions. - Derive formulae for and calculate volumes of revolution about both the x and y-axes. - Find volumes of revolution for functions given in parametric form. FC2.6 Differential Equations - Identify the form of first order differential equations that can be solved by an integrating factor and carry out the solution. - Find general and particular solutions of differential equations of this form. - Solve second order differential equations of the form $y^{\prime \prime}+a y^{\prime}+$ by $=f(x)$ where $f(x)$ is a polynomial, exponential or trigonometric function. - Find general and particular solutions of second order differential equations of this form. - Use differential equations in modelling in kinematics and in other contexts. - Solve the equation for simple harmonic motion $\ddot{x}=-\omega^{\prime \prime} x$ and relate the solution to the motion. - Model damped oscillations using second order differential equations and interpret their solutions.	D1.10 Resource Histograms - Draw and interpret resource histograms. - Level resource histograms. - Construct a scheduling diagram. - Interpret and modify schedules to meet requirements. FM1.2 Momentum \& Impulse (Part 2) - Extend the definition of linear momentum and impulse to 2-D using vectors. - Use the impulse-momentum principle in vector form, i.e. $I=m v-m u$. FM1.4 Elastic Strings \& Springs - Investigate the ability of strings to stretch and springs to stretch and compress. - Define the modulus of elasticity ($(\mathbb{})$, natural length (a) and extension (x). i.e. use Hooke's Law, $T=-\quad$, - Derive the elastic potential energy (EPE) from Hooke's Law by applying the work done in stretching a string/spring, $\text { i.e. } \mathrm{EPE}=\stackrel{\%}{\%}$ - Calculate the tension in a string or spring when a system is held in equilibrium. - Include EPE when using the work-energy principle. - Know the conditions for conservation of mechanical energy. - Solve string/spring problems involving work and energy (i.e. KE, GPE and EPE).
	Assessment Point 2 (Mock) Students sit a mock paper at the end of Term 3 which covers most of the AS Level and A Level content.	

4	Revision for final exams	FM1.6 Elastic Collisions in Two Dimensions - Understand that during an impact the impulse acts perpendicularly to the surface through the centre of the sphere. - Apply Newton's (experimental) law of restitution in the direction of the impulse. - Appreciate that perpendicular to the impulse, the velocity component does not change. - Understand and be able to calculate an angle of deflection. - Calculate the kinetic energy 'lost' in an impact. - Work in speeds and angles or in velocity vectors (i, j). - Understand that, during a collision between two smooth spheres, total momentum is conserved and the impulse acts in the direction of the line of centres. - Apply Newton's (experimental) law of restitution in the direction of the line of centres. - Appreciate that perpendicular to the line of centres, velocity components do not change. - Understand and be able to calculate an angle of deflection. - Calculate the kinetic energy 'lost' in a collision. - Work in speeds and angles or in velocity vectors (i, j).
5	Revision for final exams	
6	Paper 1: Further Core Mathematics 25%, 1 hour 30 mins, 75 marks	Any pure content can be assessed on either paper
	Paper 2: Further Core Mathematics 25%, 1 hour 30 mins , 75 marks	
	Paper 3: Decision Mathematics 1 25%, 1 hour 30 mins, 75 marks	
	Paper 4: Further Mechanics 1 25%, 1 hour 30 mins, 75 marks	

