FURTHER MATHS TERM BY TERM CURRICULUM Specification link - Edexcel Specification: AS Further Mathematics

Specification link - Edexcel Specification: AS Further Mathematics Specification link - Edexcel Specification: A Level Further Mathematics

January 2023

YEAR 12

TERM	Teacher 1 (Further Core Mathematics) delivered via 3 x 70minute lesson per week	Teacher 2 (Decision Mathematics & Further Mechanics) delivered via 1 x 70 minute lesson per week
1	 FC1.1 Complex Numbers Solve any quadratic equation with real coefficients. Add, subtract and multiply complex numbers in the form x + iy with x and y real. Understand and use the terms 'real part' and 'imaginary part'. Use and interpret Argand diagrams. Convert between the Cartesian form and the modulusargument form of a complex number. Multiply and divide complex numbers in modulus-argument form. Construct and interpret simple loci in the Argand diagram such as z − a > r and arg (z − a) = θ. 	 D1.2 Algorithms on Graphs (Part 1) Understand what an algorithm is. Trace an algorithm in the form of a flow chart. Trace an algorithm given as instructions written in text. Know how to determine the output of an algorithm and how it links to the input. Be able to determine the order of a given algorithm and standard network problems. Know how to apply a bubble sort algorithm to a list of numbers or words. Know how to apply the quick sort algorithm to a list of numbers or words, clearly identifying the pivots used for each pass. Identify the number of comparisons and swaps used in a given pass. Identify size, efficiency and order of an algorithm and use them to make predictions. Know how to solve bin packing problems using full bin, first fit, and first fit decreasing algorithms, and understand their strengths and weaknesses. Know the meaning of the vocabulary used in graph theory e.g. degree of a vertex, isomorphic graphs, walks, paths and cycles. Be familiar with different types of graph e.g. complete, planar, isomorphic, simple, connected. Understand graphs represented in matrix form. Be familiar with k notation. Know the definition of a tree. Be able to determine if a graph is Eulerian, semi-Eulerian or neither, and find Eulerian cycles.

1	FC1.6 MatricesFind the dimension of a matrix.	 D1.2 Algorithms on Graphs (Part 1) Understand the meaning of a minimum
	 Add and subtract matrices of the same 	spanning tree.
	 Add and subtract matrices of the same dimension. 	Apply Kruskal's algorithm to a network to
	Multiply a matrix by a scalar.	find the minimum spanning tree.
	Multiply conformable matrices.	• Apply Prims algorithm to a network to find the minimum spanning tree.
	 Calculate determinants of 2×2 and 3×3 matrices. 	Apply Prim's algorithm to a distance matrix
	 Understand and use singular and non- singular matrices. 	to find the minimum spanning tree.Apply Dijkstra's algorithm to find the
	Know the properties of inverse matrices.	shortest path between two vertices in a
	 Calculate the inverse of non-singular 2×2 and 3×3 matrices. 	network.Trace back through a network to be able
	• Use matrices and their inverses to solve	to find the route corresponding to the shortest path.
	linear simultaneous equations, including three linear simultaneous equations in three variables.	 Consider modifications to an original shortest path problem, for example by
	 Interpret geometrically the solution and failure of solution of three simultaneous linear equations. 	dealing with multiple start points or a different end point.
	• Use matrices to represent 2D rotations, reflections, enlargements and translations.	
	 Understand and use zero and identity matrices. 	
	 Use matrix products to represent combinations of transformations. 	
	 Use matrices to represent linear transformations in three dimensions. 	
	• Use inverse matrices to reverse the effect of a linear transformation.	
	• Use the determinant of a matrix to determine the area scale factor of a transformation.	
	 Find invariant points and lines for a linear transformation. 	

Assessment Point 1

A short assessment point is completed at the end of Term 1, following a short period of revision of the above topics (both the Further Core and Decision Mathematics modules).

3	FC1.5 Transforming Polynomials	D1.9 Critical Path Analysis
	Understand and use the relationship between roots and coefficients of	• Model a project by an activity network from a precedence table.
	polynomial equations up to quartic equations.	 Complete a precedence table from a given network.
	Form a polynomial equation whose roots	• Understand the use of dummies.
	are a linear transformation of the roots of a given polynomial equation (of at least cubic degree).	 Know how to carry out a forward pass and backward pass using early and late event times.
		Interpret and use dummies.
	FC1.7 ProofObtain a proof for the summation of a	 Be able to identify critical activities and critical paths.
	series, using induction.Use proof by induction to prove that an	 Know how to determine the total float of activities.
	 expression is divisible by a certain integer. Use mathematical induction to prove general statements involving matrix multiplication. 	Construct and interpret Gantt (cascade) charts.
4	FC1.8 Vectors	FM1.1 Momentum & Impulse (Part 1)
	• Know how to find the vector equation of a line in both two and three dimensions.	• Understand the definitions, derivation, and units of momentum and impulse.
	 Understand and use the Cartesian forms of an equation of a straight line in three dimensions. 	 Understand what happens to the momentum of a sphere as a result of a collision.
	 Understand and use the vector and Cartesian forms of the equation of a plane. Find the scalar product of two vectors. 	 Use the principle of conservation of momentum applied to direct collisions in 1-dimension.
	Check whether vectors are perpendicular	
	by using the scalar product.	FM1.3 Work, Energy & Power
	 Use the scalar product to express the equation of a plane. 	 Understand the derivation, units and definitions of work and energy.
	• Use the scalar product to calculate the	• Define kinetic energy (KE).
	angle between two lines.Use the scalar product to calculate the angle between two planes.	• Understand that work done on a body moving in a horizontal plane is the change in kinetic energy.
	 Use the scalar product to calculate the angle between a line and a plane. 	 Understand the concept of gravitational potential energy (GPE).
	 Find the points of intersection of lines and planes which meet. 	 Include GPE when applying the work- energy principle.
	 Calculate the perpendicular distance between two lines. 	 Know the conditions for conservation of mechanical energy.
	Calculate the perpendicular distance from	• Solve problems involving work and energy.
	a point to a line or to a plane.	• Understand that power in watts is the rate of doing work.
		• Calculate the power (P) of a vehicle with a tractive (driving) force F, moving with velocity v.
		• Use the formula $P = Fv$ in problem solving.

Assessment Point 2 A broader, practice-paper style assessment point is completed during Term 4, after most of the content for AS has been taught. This will cover a wider range of content from the Further Core 1, Decision Mathematics 1 and Further Mechanics 1 modules, and is designed to reflect the demands of the formal AS paper towards the end of the academic year.			
5	 FC1.4 Volumes of Revolution Derive formulae for and calculate volumes of revolution about both the x and y-axes. Solve modelling problems which involve volumes of revolution. 	 FM1.5 Elastic Collisions in One Dimension Express the 'compressibility', 'bounciness' or 'elasticity' of an object by a value called the coefficient of restitution (e). Know that 0≤e≤1 [and that e = 0 means inelastic and e =1 means perfectly elastic]. Know and be able to use Newton's (experimental) law of restitution for direct impacts of elastic spheres. Calculate the change in kinetic energy due to an impact. Solve problems of the following types involving elastic impacts: a) successive collisions between pairs of spheres (horizontal motion). b) bouncing ball (off a horizontal elastic plane). c) successive collisions including two spheres and sphere against a wall. d) determination of the number of collisions or deriving the possible range of e. 	
Revision for AS exams AS exams			
	Paper 1: Further Core Mathematics 1 50%, 1 hour 40 mins, 80 marks	Only Year 12 content assessed	
	Paper 2: Decision Mathematics 1 & Further Mechanics 1 50%, 1 hour 40 mins, 80 marks	Only Year 12 content assessed Section A (25% of AS Level) Section B (25% of AS Level)	

YEAR 13

Module 1 is taught by Teachers 1 and 2 across the Year, with particular focus through practical assessed activities.

TERM	Teacher 1 (Further Core Mathematics) delivered via 3 x 70minute lesson per week	Teacher 2 (Decision Mathematics & Further Mechanics) delivered via 1 x 70 minute lesson per week
1	 FC2.1 Complex Numbers Multiply and divide complex numbers in modulus-argument and exponential form. Know and use cosine and sine in terms of the exponential form. Understand, remember and be able to use de Moivre's theorem: zⁿ = rⁿe^{inθ} = rⁿ(sin nθ + icos nθ). Derive multiple angle formulae/expressions e.g. cos 3θ in terms of powers of cos θ, and sin³ θ in terms of multiple angles of sin θ. Apply de Moivre's theorem to sum a geometric series. Know how to solve completely equations of the form zⁿ - a - ib = 0, giving special attention to cases where a = 1, b = 0. FC2.5 Hyperbolic Functions Know the definitions of sinh x, cosh x and tanh x including their domains and ranges. Sketch graphs of the hyperbolic functions. Differentiate and integrate the hyperbolic functions and know the standard results. Understand and be able to use the inverse hyperbolic functions including domains and ranges. Derive, use and know the logarithmic forms of the inverse hyperbolic functions. 	 D1.3 The Planarity Algorithm Apply the planarity algorithm for planar graphs. Determine if a graph contains a Hamiltonian cycle. D1.5 Route Inspection Determine whether a graph is traversable. Apply an algorithm to solve the route inspection problem; Find a route by inspection. Understand the importance of the order of vertices of the graph in finding a route.

A practice-paper style assessment point is completed at the start of Term 2. This includes contents from the Further Core 1 and Decision Mathematics 1 modules, as well as the Further Core 2 content covered during Term 1.

2	 FC2.4 Polar Coordinates Understand and be able to use polar coordinates and be able to convert between polar and Cartesian coordinates. Know how to sketch standard polar curves. Find tangents parallel and perpendicular to the initial line. Find (compound) areas under polar graphs 	 D1.6 The Travelling Salesperson Problem Understand the travelling salesman problem and that there is no simple algorithm to solve it for complex networks. Use the nearest neighbour algorithm to find upper bounds for the problem. Find lower bounds for a problem. Understand that not all upper and lower bounds give a solution to the problem.
	using the ¹ ∫ formula " r"dθ. FC2.2 Series	Know how to identify the best upper and lower bounds.Solve the travelling salesman problem and
	Use the method of differences to sum simple finite series.	interpret this solution in the context of the problem.
	 Find and use higher derivatives of functions. 	D1.8 The Simplex Algorithm
	 Know how to express functions as an infinite series in ascending powers using Maclaurin's expansion. Find the series expansion of composite functions. 	 Understand and use slack, surplus and artificial variables.
		 Use slack variables to write inequality constraints as equations.
		 Know how to rewrite LP problems so that each equation contains all the variables x, y, s, and t.
		• Put the information in an initial tableau.
		• Find the pivot and use it to form a new tableau.
		 Identify if a tableau satisfies the optimality condition.
		 Know how to use slack and surplus variables.
		 Understand and be able to use artificial variables.
		• Use the two-stage simplex algorithm.
		• Use the Big-M method.
		• Relate the solution to the original problem.

3	 FC2.3 Further Calculus Know how to deal with infinity as a limit of a definite integral. Integrate functions across limits which include values when the function is undefined i.e. deal with discontinuous integrands. Understand and be able to evaluate the mean value of a function. Integrate functions which can be split into partial fractions up to denominators with quadratic factors. Differentiate inverse trigonometric functions such as 1_ 2	 D1.10 Resource Histograms Draw and interpret resource histograms. Level resource histograms. Construct a scheduling diagram. Interpret and modify schedules to meet requirements. FM1.2 Momentum & Impulse (Part 2) Extend the definition of linear momentum and impulse to 2-D using vectors. Use the impulse-momentum principle in vector form, i.e. I = mv – mu. FM1.4 Elastic Strings & Springs Investigate the ability of strings to stretch and springs to stretch and compress. Define the modulus of elasticity (), natural length (a) and extension (x). Use the above definitions to work out the tension in a stretched string or a stretched/ compressed spring %& i.e. use Hooke's Law, T =' Derive the elastic potential energy (EPE) from Hooke's Law by applying the work done in stretching a string/spring, %&\$ i.e. EPE = (' Calculate the tension in a string or spring when a system is held in equilibrium. Include EPE when using the work-energy principle. Know the conditions for conservation of mechanical energy (i.e. KE, GPE and EPE).
	Students sit a mock paper at the end of Terr	Point 2 (Mock) n 3 which covers most of the AS Level and A content.

4	Revision for final exams	 FM1.6 Elastic Collisions in Two Dimensions Understand that during an impact the impulse acts perpendicularly to the surface through the centre of the sphere. Apply Newton's (experimental) law of restitution in the direction of the impulse. Appreciate that perpendicular to the impulse, the velocity component does not change. Understand and be able to calculate an angle of deflection. Calculate the kinetic energy 'lost' in an impact. Work in speeds and angles or in velocity vectors (i, j). Understand that, during a collision between two smooth spheres, total momentum is conserved and the impulse acts in the direction of the line of centres. Apply Newton's (experimental) law of restitution in the direction of the line of centres. Apply Newton's (experimental) law of restitution in the direction of the line of centres. Appreciate that perpendicular to the line of centres. Appreciate the kinetic energy 'lost' in a collision. Work in speeds and angles or in velocity vectors (i, j).
5	Revision for	final exams
6	Paper 1: Further Core Mathematics 25%, 1 hour 30 mins, 75 marks	Any pure content can be assessed on either paper
	Paper 2: Further Core Mathematics 25%, 1 hour 30 mins , 75 marks	
	Paper 3: Decision Mathematics 1 25%, 1 hour 30 mins, 75 marks	
	Paper 4: Further Mechanics 1 25%, 1 hour 30 mins, 75 marks	